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Bifurcation of gap solitons through catastrophe theory
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In the theory of optical gap solitons, slowly-moving finite-amplitude Lorentzian solutions are found to
mediate the transition from bright to coexistent dark-antidark solitary wave pairs when the laser frequency is
detuned out of the proper edge of a dynamical photonic band gap. Catastrophe theory is applied to give a
geometrical description of this strongly asymmetrical ‘‘morphing’’ process.
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The confinement of optical radiation in periodic med
~gratings! with nonlinear response occurs in the form of g
solitons~GS!, or more properly solitary waves, as first pr
dicted by Chen and Mills@1#, and studied extensively afte
wards@2–8#. In Kerr media, the prototype model for GS
the following system of hyperbolic partial differential equ
tions with Hamiltonian~conservative! structure@9,10#, which
couples the forwardu1(z,t) and backwardu2(z,t) propa-
gating envelopes at Bragg carrier frequencyvB

i ~] t1]z!u11u21~Xuu2u21Suu1u2!u150,
~1!

i ~] t2]z!u21u11~Xuu1u21Suu2u2!u250.

Equations~1! have been conveniently written in usual d
mensionless unitsz5GZ and t5GVBT, whereZ and T are
the real-world propagation distance and time,G is the Bragg
coupling coefficient, andVB is the group velocity at Bragg
frequency. MoreoverSandX are coefficients that specify th
relative weight of self- and cross-phase modulation, andu6

are proportional to real-world envelope amplitudes. Eq
tions ~1! are usually analyzed withS51 andX52 ~one of
the two coefficients can be always set to have unitary mo
lus by a suitable rescaling of the field amplitudes! that de-
scribesscalar-mode coupling, e.g., in optical fiber grating
@2–6#. Conversely we find convenient to leave them as
neric coefficients in order to describe both the cases of
cusing (S,X.0 @2–5#! and defocusing (S,X,0 @1#! nonlin-
earity, as well as the two limit casesX50 andS50, which
arise, e.g., when the cubic nonlinearity originates from c
cading in quadratic media@11,12#. Cascading adds improve
flexibility since it permits to control the sign of the effectiv
Kerr nonlinearity by tuning the wave-vector mismatch. W
also emphasize that, in the caseS50, Eqs.~1! reduce to the
integrable~by means of the inverse scattering method! mas-
sive Thirring model, and hence the localized waves
strictly speaking solitons.

Despite the fact that GS arise in a variety of physi
settings and models, the importance of Eqs.~1! is threefold.

~i! They describe with reasonable accuracy optical
experimentally investigated in fiber Bragg gratings@7# and in
corrugated GaAs waveguides@8#.
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~ii ! Though not integrable by inverse scattering meth
~except for the massive Thirring case!, the model allows to
construct the whole family of solitary waves.

~iii ! Equations~1! have allowed to assess the occurren
of peculiar effects such as the onset of oscillatory instab
ties @9,10#, ultimately related with the absence of mater
dispersion ~i.e., second-order derivatives! which distin-
guishes Eqs.~1! from other soliton-bearing dispersive mod
els ~e.g., those of the nonlinear Schro¨dinger type!.

GS of Eqs.~1! have been studied for more than a deca
and both bright@2,3# and dark@4# solutions were reported
Yet, the existence of such GS solutions and their bifurcati
~how they change qualitatively against changes of para
eters! were never investigated to full extent. Here we unv
the bifurcation structure of GS, restricting ourselves to s
luminal solutions for physical reasons. We show that mov
Lorenztian GS mark the transition between in-gap bright
and dark-antidark GS pairs that coexist either below or ab
~depending on the focusing or defocusing nature of the n
linearity, respectively! the edge of a suitably defined dynam
cal gap. We also link this dynamical gap to the stop ba
usually defined in the stationary coupled-mode theory
Bragg gratings, discussing why the former is more import
and why, in our opinion, the distinction betweengap and
Bragg bright solitons seems artificial.

Following the notation of Ref.@10#, the entire family of
solitary waves of Eqs.~1! can be characterized by seekin
solutions in the form

u1~z,t !5U1Ah~z!exp$2 iDt1 i @bz1f1~z!#%
~2!

u2~z,t !5U2Ah~z!exp$2 iDt1 i @bz1f2~z!#%,

whereb[gvD plays the role of GS propagation constan
and the intensityh and the chirp~nonlinear phase! f6 pro-
files depend onz[g(z2vt), with g5(12v2)21/2 being the
~subluminal, uvu,1) Lorentz factor. FurthermoreU1

5AA4 (11v)/(12v) andU252sAA4 (12v)/(11v) account
for the velocity-induced asymmetry between the foward a
backward modes, whereass[sgn@X(12v2)1S(11v2)#
is the sign of the nonlinearity that appears only throu
©2001 The American Physical Society17-1
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the common overall coefficientA5g21u2X(12v2)12S(1
1v2)u21/2. Importantly the entire family of GS is characte
ized by two independent parameters@so-calledinternal pa-
rameters to be distinguished by theexternal parametersX
andS that appear in Eqs.~1!#, namely, the normalized detun
ing D and soliton velocityv. These correspond, in real-worl
units, to dv5GVBD and V5VBv, and are related to rota
tional and translational group symmetries of Eqs.~1!, respec-
tively @10#. Note thatD50 corresponds to the Bragg fre
quency, andv50 yields still GS, i.e., confinement of ligh
with zero velocity in the lab frame.

By direct substitution of Eqs.~2! into Eqs.~1!, it is readily
verified that the intensityh and overall phaseu[f12f2

obey the following one-dimensional~thus integrable! Hamil-
tonian system of equations

ḣ52h sinu52
]H

]u
,

~3!

u̇52d12 cosu2h5
]H

]h
,

where the dot stands ford/dz, H5H(h,u)52h cosu

12dh2h2/2 is the reduced-conserved (Ḣ50) Hamiltonian,
which now depends on the single parameterd[gD. In Eqs.
~1! and hereafter we implicitly assume to deal with the se
defocusing nonlinearitys521 originally considered in Ref
@1#, including the case of vanishingSor X. The results can be
readily extended to the self-focusing cases51 with the sub-
stitutionu→2p2u andd→2d. Importantly, the latter con-
dition means that the role of frequencies below and ab
Bragg frequency must be simply interchanged.

The reduced system~3! permits to find the solitary wave
of Eqs. ~1! as the separatrix trajectories that are homocli
to ~i.e., emanate from and return to! the unstable fixed points
hs ,us of Eqs.~3!. Given the constrainth.0 in Eq.~2!, these
are easily found to be of two kinds:~i! (hs ,cosus)5(0,
2d) for d2,1, which is associated with solutions of th
bright type sinceh(z56`)5hs50; ~ii ! (hs ,us)5@2(d
21),p# for d.1, which describe GS with nonvanishin
background or pedestalh(z56`)5hs52(d21). For any
fixed value of the parameterd, the solitary waves corre
spond, in both cases, to level curves of the HamiltonianHs
5H(hs ,us).

Let us first clarify the relation between the existence d
main of these two families of GS and the stop band or f
bidden gap of frequencies exhibited by the grating in
linear operation regime. Bright solutions exist forudu,1,
which is mapped into the inner domainD21v2,1 of the
parameter planeD,v ~such representation was alrea
adopted in Refs.@10,13#!. This unitary circle can be regarde
as adynamical gap, since in this domain the linear problem
@i.e., Eqs. ~1! with S,X50# yields exponentially damped
traveling-wave solutions @u6}exp(2iDt1iQz), with
Q2,0#. On the other hand, solutions with nonzero pede
exist only outside this dynamical gap or unitary circle.

To clarify further the role of the soliton velocityv, it is
important to link the dynamical gapD21v2,1 with the
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band gap~henceforth termedrest gapto rule out any possible
source of misunderstanding! of the stationary linear coupled
mode problem. Such rest gap is well known to be related
the reflectivity bandwidth of the grating, in turn measurab
by means of a tunable cw laser in the laboratory~or rest!
frame (z,t). Quantitatively, the rest gap is given by the fr
quency rangeud1u,1 (udv1u,GVB in real-world units!
where solutionsu6(z,t)5u6(z)exp(2id1t) with frequency
detuningd1 ~real-world frequencyvB1dv1) are exponen-
tially damped in space, at variance with the out-gap c
ud1u.1 where they become oscillatory@14#. In the velocity-
frequency plane (v,d1) the rest gap is the (v-independent!
lighter-shaded domain shown in Fig. 1~a!, which has a clear
one-to-one correspondence with the reflectivity bandwi
reported for comparison in Fig. 1~b!. To map the dynamica
band gap in the same parameter plane, we need to k
what is the actual normalized GS frequency detuning in
rest frame, which is readily found to bed1[g2D by group-
ing in Eqs.~2! phase terms proportional tot. In other words
the excitation of a GS characterized by the parametersv and
D requires a source with detuningd15g2D from Bragg fre-
quency. As a consequence the dynamical gap where br
GS exist, can be mapped onto the whole shaded domaid1

2

,g4(12v2) or equivalentlyud1u,g of Fig. 1. It is clear
that, for any given velocityv, this entails a frequency rang
that is wider than the rest gapud1u,1 and reduces to it only
in the v50 limit. As a consequence bright GS exist for fr
quencies ranging from the rest gap~reflectivity bandwidth!
in thev50 case, to the whole frequency axis asuvu→1 ~i.e.,
as the soliton velocityV approaches the linear group veloci
VB in the forward or backward direction!.

As far as the terminology is concerned, a last import
comment is in order. Bright solitary solutions of Eqs.~1! are
usually classified as gap solitons or Bragg solitons, depe
ing on their detuningd1 being inside (ud1u,1, light-shaded
domain in Fig. 1! or outside (1,ud1u,g, dark-shaded do-
main in Fig. 1! the rest gap, respectively. Though such
distinction can be useful to locate the operating freque
with respect to the reflectivity bandwidth of the grating,
appears otherwise rather artificial. First, for any given vel
ity v there are no qualitative changes of the solutions

FIG. 1. ~a! The dynamical photonic band gap~whole shaded
domain! ud1u,g in the parameter plane of velocity and rest detu
ing (v,d1). Such domain is mapped back onto the inner dom
bounded by the circleD21v251 in the plane (D,v), see Fig. 2.
The rest band gapud1u,1 is the smaller region between the tw
dashed linesd1561 ~light shaded area!, and corresponds to the
bandwidth of the linear reflectivity curve shown with the same v
tical scale in~b! for a grating of normalized lengthzL5GL54.
7-2



s.
es

th
c
y

h
e
ed

r-

n

o

d
li-
ty

s

he
d

u
-
a

th
on
n

en
ve
re
ity

ac-
fre-

ss

-

y

t.
-
s

ap
e

o-

the

trix.

BIFURCATION OF GAP SOLITONS THROUGH . . . PHYSICAL REVIEW E64 036617
crossing the boundaryud1u51 between these two region
Second, and more important, the picture of Fig. 1 sugg
that all the existing bright-localized waves are in factgap
solitons if referred to the dynamical gap. In other words,
plot of Fig. 1~a! can be interpreted by saying that the effe
tive frequency gap seen by a soliton that moves at velocitv
is wider~the faster the soliton the wider the gap! than the rest
gap measured through the reflectivity in the rest frame. T
is also supported by the fact thatd can be interpreted as th
frequency detuning of the soliton in Lorentz transform
variablesz,t with t5g(t2vz) @15#. Therefore the rest gap
condition ud1u,1 must be replaced in moving soliton coo
dinates by the conditionudu5ud1u/g,1 that coincides with
the dynamical gap.

As far as the excitation of bright GS is concerned, o
should correctly refer to the dynamical~wider! gap as the
proper region of existence. In general one can achieve c
trol on the input laser frequency detuning~i.e., d1) and the
beam profiles, but not on the velocity. Whenud1u.1, so that
the laser operates outside the rest gap~as it is usually the
case in experiments carried out in fiber gratings!, it is imme-
diately clear from Fig. 1~a! that one has a lower boun
v low

2 512d1
22 on the square velocity of the excitable so

tons. In other words only solitons that travel with veloci
uvu.v low5(12d1

22)1/2 ~in both directions! do exist and can
be excited. In the limit of infinite-frequency detuning
(ud1u→`) from Bragg frequency,v low→1, and solitons can
only travel at linear group velocity. Conversely, inside t
rest gap (ud1u,1), such limitation does not hold, an
solitons with any velocityuvu,1 can be excited. Ideally, a
particular value of velocity is selected by matching the inp
beam profile~intensity and phase! to the solution that corre
sponds to that particular value of velocity. However, this c
be hardly done in practice because, even assuming that
is no change of frequency in the process of soliton formati
the actual field profile inside the grating is affected by stro
reflection at the grating boundary, and the velocity, in g
eral, cannot be predicted with simple arguments. Moreo
one should consider that the excitation of a soliton requi
besides existence, also to fulfill the requisite of stabil
al
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@9,10#. Incidentally, the decay of an unstable GS can be
companied by changes of both internal parameters,
quency and velocity.

In order to find the GS profiles consider that Eqs.~3! are
equivalent to the motion of an ideal particle of unitary ma
and total energyE in a quartic potential wellU(h), ruled by
the equationḧ52]U/]h. The kinetic energy is easily ob
tained in the standard form from the first of Eqs.~3! by
eliminating sinu throughH, which yields

ḣ5A2@E2U~h!#, ~4!

whereU522dHh2 1
2 (424d22H)h22dh31 1

8 h4, andE
52H2/2. The GS solutions can be worked out explicitly b
inverting the quadrature integral obtained from Eq.~4! with
the energyE52Hs

2/2 pertaining to the unstable fixed poin
For the case~i! udu,1, we found expressions for the inten
sity h(z) and phaseu(z) @explicit expressions for the phase
f6(z) can be also found#, which entail GS of the bright type

hB5
4~12d2!

cosh~2A12d2z!2d
, ~5!

uB5tan21F A12d2sinh~2A12d2z!

211d cosh~2A12d2z!
G . ~6!

Close to the low-frequency edge of the dynamical g
d;21, the following approximation of the intensity profil
in Eq. ~5! holds valid @exploit cosh(2x)52 cosh2(x)21 and
12d2;2(11d)#

hB54~11d!sech2~A2~11d!z!, ~7!

which is characteristic of the one-soliton solution of the f
cusing nonlinear Schro¨dinger equation, which is known to
provide a reasonable description of GS in this region of
gap @5,16#.

In the case~ii !, i.e. for d.1 two solutions coexist, being
associated with two branches of a double-loop separa
The first one represents a dark soliton
hDK52~d21!
cosh~2Ad21z!2Ad

Adcosh~2Ad21z!11
, ~8!

uDK5tan21F 4Ad21~d11!sinh~2Ad21z!

3d212d3/22314~d21!d cosh~2Ad21z!1~d222d3/221!cosh~4Ad21z!
G , ~9!
ero-
f

whereas the second one is a bright on pedestal or so-c
antidark solution@17#

hAK52~d21!
Adcosh~2Ad21z!11

Adcosh~2Ad21z!21
, ~10!
led
uAK5tan21F4Ad21Adsinh~2Ad21z!

223d1d cosh~4Ad21z!
G . ~11!

These dark and antidark solutions specialized to the z
velocity case (v50) have important implications in terms o
7-3
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C. CONTI AND S. TRILLO PHYSICAL REVIEW E64 036617
the stationary (] t50) response of the grating, inducing lim
iting or frustrated bistability, as discussed in Ref.@18#.

Right on the high-frequency edge of the dynamical g
i.e., for d→1, the dark GS vanishes (hDK→0), while the
bright and the antidark solutions have the following comm
limit:

hLZ5
8

11~2z!2
, ~12!

uLZ5tan21F 4z

~2z!221
G , ~13!

which represents a finite-amplitude moving Lorentzian s
ton, i.e., a GS with Lorentzian intensity profile. The ex
tence of an exact solution of Eqs.~1! with nonexponentially
decaying tails can be understood from the dynamical sys
~3! as being associated with a degenerate fixed point at
origin with zero eigenvalues. The fact that the Lorentz
shape approximates well bright GS close to the upper bo
of the gap was noticed earlier under strictly stationary c
ditions (v50) @6#.

Vice versa, ford→21, i.e., close to the low-frequenc
edge of the dynamical gap, the intensity of the bright GS
Eq. ~5! @or, consistently, of its nonlinear Schro¨dinger ap-
proximation~7!# reduces to the following Lorentzian profil

hLZ5
4~11d!

114
11d

12d
z2

>
4~11d!

112~11d!z2
. ~14!

In this case, however, as the stop-band edge is approa
the Lorentzian GS~14! becomes broader and smaller, a
eventually vanishes identically (hB→0) for d521. The
difference between the finite-amplitude@Eq. ~13!# and the
vanishing-amplitude@Eq. ~14!# Lorentzian GS accounts fo
an intrinsic asymmetry of the nonlinear grating operat
with respect to interchange of frequencies below and ab
the Bragg frequency, respectively.

Figure 2 summarizes the nature of the different GS so
tions by reporting the intensity profilesuu6u2 of qualitatively
different GS solutions sampled in the parameter plane (D,v).
First, it must be noticed that still (v50) GS have equa
intensitiesuu1u25uu2u2 as a consequence of the fact that t
net photon flux is zero, for both in-gap~bright! and out-gap
~dark-antidark! solutions. Moreover, let us recall that the am
plitude of the in-gap~bright! GS increases and their widt
decreases by spanning the gap from left to right. The s
metry uu1u25uu2u2 is broken for moving GS, which have
stronger component in the direction of motion~i.e., uu1u
.uu2u for v.0 and uu2u.uu1u for v,0). Importantly,
bright GS that have high amplitude~see HA inset in Fig. 2!
close to the upper edge of the dynamical gap, beco
Lorentzian GS~LZ inset in Fig. 2! over the edgeD1v2

51, and then bifurcate into dark-antidark pairs~DK and AK
insets in Fig. 2! outside the dynamical bandgap. It is wor
noting that the bright GS solutions with finite energy~or
mass! bifurcate into this pair of solutions that, in an ide
03661
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infinite grating, have infinite energy due to their nonze
background. In a finite grating the excitation of such dark
antidark GS solutions is likely to be more critical than the
bright counterpart, requiring proper excitation at the grat
boundaries.

Vice versa, as explained above, the low-amplitude~LA
inset! bright GS that exist close to the lower edge of the g
vanishes in the limitd→21, and no solutions exist below
the bottom of the stop band~i.e., outside the circle forD
,0). For a focusing nonlinearity (s51) an identical picture
with D→2D holds true, meaning that the dark-antida
pairs originate always from the high-amplitude bright G
though, in this case, they now exist below the low-frequen
edge of the dynamical gap.

The bifurcation of GS can be effectively explained
terms of the catastrophe theory@19#, and the underlying clas
sification of the singularities of smooth functions. The qu
tic potentialU(h) belongs to the so-called cuspA13 family
@19#. It can be recast in the following standard form b
means of the change of variableh5A4 2x12d, thus obtain-
ing

Û~x!5
1

4
x41

a

2
x21bx, ~15!

wherea[A2(2422d21H) and b[28A4 2d. A necessary
condition for the solitary waves to exist is that the potent
Û(x) has three critical points~i.e., such that]Û/]x50),
thus being of a double-well type. In the parameter pla
(a,b) this occurs in a domain bounded by the followin
curve, so-called ‘‘bifurcation set’’@19#,

FIG. 2. Existence diagram~defocusing case! for subluminal GS
in the region of detuning-velocity (D,v) plane bounded by the thin
lines at v561. The insets show GS intensity profilesuu6u2

sampled at the nearest marker~filled circle!. Bright GS of low-
amplitude~LA !, high-amplitude~HA!, and asymmetric~AS! types
exist inside the dynamical gap~unitary circleD21v251). HA soli-
tons become finite-amplitude Lorentzian~LZ! over the right semi-
circle, and then bifurcate into dark~DK! and antidark~AK ! pairs,
which coexist for frequencies above the upper edge of the dyna
cal bandgap. In the focusing case the same picture holds
D→2D.
7-4
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S a

3D 3

1S b

2D 2

50, ~16!

which is reported as a thin-solid line in Fig. 3. As shown, th
curve has the characteristic shape of a cusp. In the spir
the catastrophe theory, we also report in Fig. 3 the so-ca
control line, i.e., how the parameters (a,b), and as a conse
quence the potentialÛ, vary by changing the single contro
parameterd from large-negative values to large-positive va
ues~indicated in Fig. 3 by the limitd52` and d5`, re-
spectively!. In doing so we calculatea with H5Hs , i.e., the
value of the Hamiltonian pertaining to the solitons.

According to our analysis, by varyingd in the range
(2`,`) the control line remains always inside the cus
indicating the possibility to have solitary waves. Drama
qualitative changes of the solutions must be expected a

FIG. 3. Plot of the bifurcation set~thin line! from Eq. ~16! and
the control line~thick line! that gives the parametric dependence

the coefficientsa and b of the potentialÛ(x) in Eq. ~15! on the
control parameterd, when this is varied from large-negative valu
(d52`) to large-positive values (d5`). The dashed portion o
the control line corresponds to unphysical solutions (h,0). Two
catastrophes occur at the pointsd561.
n

R.

a

03661
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catastrophe pointsd561 where the control line become
tangent to the bifurcation set. In spite of the apparent sy
metry of Fig. 3, the two catastrophes are the signature of
strongly asymmetrical behavior of GS against interchange
frequencies below (d,0) and above (d.0) the Bragg fre-
quency. Indeed, thed51 catastrophe marks the point whe
the maximum of the potential~15! moves from a finite posi-
tive value for d.1 ~which makes accessible two distin
asymptotic evolutions inside the two wells, in turn corr
sponding to the dark and antidark GS!, to the origin for
21,d,1 ~where only one well is accessible for th
asymptotic motion towards the origin that describes
bright GS!. Conversely, the other catastrophe atd521
marks the point where these bright GS simply cease to e
because the maximum of the potential moves towards ne
tive values. In fact, though the potential still has a doub
well shape even for2`,d,21, the possibility to have
solitary waves is ruled out by the fact that the two we
become accessible only withh,0, and hence the solution
are unphysical~recall thath is an intensity!. The dashed line
in Fig. 3 displays that portion of the control line where th
solutions are unphysical.

In summary we have shown that GS solutions of a we
known standard coupled-mode model with Kerr or Ke
equivalent nonlinearity undergo a bifurcation that is stron
asymmetrical with respect to the Bragg frequency. The qu
tative change of the solutions is explained with a geometr
picture based on the application of the catastrophe the
The bifurcation is marked by the existence of finit
amplitude Lorentzian GS. In this sense it is reminiscent
the recently investigated case of localized waves susta
by a gap of full nonlinear origin@20#. In spite of the diversity
between the bifurcation discussed here and that of Ref.@20#,
this suggests that Lorentzian solitons can play a unive
role in the localization of light in periodic media.

We thank Yuri Kivshar for fruitful discussions concernin
Lorentzian solitons.
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