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Bifurcation of gap solitons through catastrophe theory
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In the theory of optical gap solitons, slowly-moving finite-amplitude Lorentzian solutions are found to
mediate the transition from bright to coexistent dark-antidark solitary wave pairs when the laser frequency is
detuned out of the proper edge of a dynamical photonic band gap. Catastrophe theory is applied to give a
geometrical description of this strongly asymmetrical “morphing” process.
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The confinement of optical radiation in periodic media

PACS nunierd2.65.Tg

(i) Though not integrable by inverse scattering method

(gratings with nonlinear response occurs in the form of gap(except for the massive Thirring cas¢he model allows to

solitons(GS), or more properly solitary waves, as first pre-

dicted by Chen and Mill§1], and studied extensively after-
wards[2—-8]. In Kerr media, the prototype model for GS is

the following system of hyperbolic partial differential equa-

tions with Hamiltonianconservativestructurd 9,10], which
couples the forwardi, (z,t) and backwardi_(z,t) propa-
gating envelopes at Bragg carrier frequengy

i(d+dur+u_+(Xlu_|?+9u,|?u, =0,
(o
i(dy— dHu_+u,+(X|u, >+ SJu_|?)u_=0.

Equations(1) have been conveniently written in usual di-
mensionless unitg=I"Z andt=I"VgT, whereZ and T are
the real-world propagation distance and tifheis the Bragg
coupling coefficient, and/g is the group velocity at Bragg
frequency. Moreoveg and X are coefficients that specify the
relative weight of self- and cross-phase modulation, and

construct the whole family of solitary waves.

(iii) Equations(1) have allowed to assess the occurrence
of peculiar effects such as the onset of oscillatory instabili-
ties [9,10], ultimately related with the absence of material
dispersion (i.e., second-order derivativeswhich distin-
guishes Eqs(1) from other soliton-bearing dispersive mod-
els (e.g., those of the nonlinear Scdinger type.

GS of Egs.(1) have been studied for more than a decade,
and both brighf2,3] and dark[4] solutions were reported.
Yet, the existence of such GS solutions and their bifurcations
(how they change qualitatively against changes of param-
eterg were never investigated to full extent. Here we unveil
the bifurcation structure of GS, restricting ourselves to sub-
luminal solutions for physical reasons. We show that moving
Lorenztian GS mark the transition between in-gap bright GS
and dark-antidark GS pairs that coexist either below or above
(depending on the focusing or defocusing nature of the non-
linearity, respectivelythe edge of a suitably defined dynami-
cal gap. We also link this dynamical gap to the stop band
usually defined in the stationary coupled-mode theory of

are proportional to real-world envelope amplitudes. EquaBragg gratings, discussing why the former is more important

tions (1) are usually analyzed wit8=1 andX=2 (one of

and why, in our opinion, the distinction betwegap and

the two coefficients can be always set to have unitary moduBragg bright solitons seems artificial.

lus by a suitable rescaling of the field amplitugésat de-
scribesscalarmode coupling, e.g., in optical fiber gratings

Following the notation of Refl10], the entire family of
solitary waves of Eqs(l) can be characterized by seeking

[2—6]. Conversely we find convenient to leave them as gesolutions in the form
neric coefficients in order to describe both the cases of fo-

cusing 6,X>0 [2-5]) and defocusing$,X<0 [1]) nonlin-
earity, as well as the two limit cases=0 andS=0, which

arise, e.g., when the cubic nonlinearity originates from cas-

cading in quadratic medid1,12. Cascading adds improved
flexibility since it permits to control the sign of the effective

Kerr nonlinearity by tuning the wave-vector mismatch. We

also emphasize that, in the ce8& 0, Egs.(1) reduce to the
integrable(by means of the inverse scattering methoths-

ui(zt)=U. vn(Oexg{ —iAt+i[B{+ ¢, (O]}
@)

u_(zt)=U_vn(dexg{ —iAt+i[B{+ (D]},

where B=yv A plays the role of GS propagation constant,

sive Thirring model, and hence the localized waves areénd the intensityy and the chirp(nonlinear phase¢.. pro-

strictly speaking solitons.

files depend o= y(z—vt), with y=(1—v?)~*2 being the

Despite the fact that GS arise in a variety of physical(subluminal, |[v|<1) Lorentz factor. FurthermoreU .

settings and models, the importance of Eds.is threefold.

=AY (1+v)/(1-v) andU_=—sAY(1—v)/(1+v) account

(i) They describe with reasonable accuracy optical GSor the velocity-induced asymmetry between the foward and

experimentally investigated in fiber Bragg grati@$and in
corrugated GaAs waveguidgs].
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backward modes, whereas=sgrX(1—v?)+S(1+v?)]
is the sign of the nonlinearity that appears only through
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the common overall coefficiera=y~Y|2X(1-v?)+2S(1 Ta 6 o)

+v?)| Y2 Importantly the entire family of GS is character- o4 4

. . . >

ized by two independent parametés®-calledinternal pa- = 2

rameters to be distinguished by tleeternal parametersX So of

andSthat appear in Eqg1)], namely, the normalized detun- B 5 N

ing A and soliton velocity . These correspond, in real-world @_4 4 5

units, to w=TI"VgA andV=Vgv, and are related to rota- 5 s

tional and translational group symmetries of E(ds3, respec- 1 05 0 05 170 05 1
soliton velocity v reflectivity

tively [10]. Note thatA=0 corresponds to the Bragg fre-

quency, and =0 yields still GS, i.e., confinement of light FIG. 1. (@ The dynamical photonic band gdwhole shaded

with zero velocity in the lab frame.

By direct substitution of Eqg2) into Eqgs.(1), it is readily
verified that the intensity; and overall phasé@=d¢, — ¢ _
obey the following one-dimensionéhus integrableHamil-
tonian system of equations

: ) dH
n=2nsSinf=— 70"
)
. dH
0=26+2 cosfd— n= %,

where the dot stands fod/d¢, H=H(%,0)=27cosd

+285— 1712 is the reduced-conservedi £0) Hamiltonian,
which now depends on the single parameieryA. In Eqgs.

domain | 8| <y in the parameter plane of velocity and rest detun-
ing (v,81). Such domain is mapped back onto the inner domain
bounded by the circldA\?+v2=1 in the plane 4,v), see Fig. 2.
The rest band gaps;|<1 is the smaller region between the two
dashed liness; = =1 (light shaded area and corresponds to the
bandwidth of the linear reflectivity curve shown with the same ver-
tical scale in(b) for a grating of normalized length =T'L=4.

band gaghenceforth termedest gapto rule out any possible
source of misunderstandingf the stationary linear coupled-
mode problem. Such rest gap is well known to be related to
the reflectivity bandwidth of the grating, in turn measurable
by means of a tunable cw laser in the laborat@oy res)
frame (z,t). Quantitatively, the rest gap is given by the fre-
quency range|8;|<1 (|dwq|<T'Vg in real-world unit3
where solutionau. (z,t) =u(z)exp(—idit) with frequency

(1) and hereafter we implicitly assume to deal with the self-detuning §; (real-world frequencywg+ dw,) are exponen-

defocusing nonlinearitg= — 1 originally considered in Ref.

tially damped in space, at variance with the out-gap case

[1], including the case of vanishirigor X. The results can be |8;|>1 where they become oscillatof§4]. In the velocity-

readily extended to the self-focusing casel with the sub-

stitution — 27— 6 and 6— — §. Importantly, the latter con-

frequency planey,8;) the rest gap is thevtindependent
lighter-shaded domain shown in Figal, which has a clear

dition means that the role of frequencies below and abovene-to-one correspondence with the reflectivity bandwidth

Bragg frequency must be simply interchanged.

reported for comparison in Fig(ld). To map the dynamical

The reduced systeli8) permits to find the solitary waves band gap in the same parameter plane, we need to know
of Egs. (1) as the separatrix trajectories that are homoclinicwhat is the actual normalized GS frequency detuning in the
to (i.e., emanate from and return)tihe unstable fixed points rest frame, which is readily found to b= y?A by group-

75, 05 of Egs.(3). Given the constraing>0 in Eq.(2), these
are easily found to be of two kindgi) (#s,co0s6)=(0,

ing in Egs.(2) phase terms proportional toln other words
the excitation of a GS characterized by the parametexsd

—6) for 6°<1, which is associated with solutions of the A requires a source with detuniny=y?A from Bragg fre-

bright type sincen({=*w)=7n=0; (ii) (7ns,0s)=[2(5

quency. As a consequence the dynamical gap where bright

—1),w] for 6>1, which describe GS with nonvanishing GS exist, can be mapped onto the whole shaded doﬂfain

background or pedestaj({= £ »)=n,=2(6—1). For any

<y*(1-v?) or equivalently|5,|<y of Fig. 1. It is clear

fixed value of the paramete#, the solitary waves corre- that, for any given velocity, this entails a frequency range

spond, in both cases, to level curves of the Hamiltortign
=H(7s,0s).

that is wider than the rest gdp;| <1 and reduces to it only
in thev =0 limit. As a consequence bright GS exist for fre-

Let us first clarify the relation between the existence do-quencies ranging from the rest géagflectivity bandwidth
main of these two families of GS and the stop band or forin thev =0 case, to the whole frequency axis|ag—1 (i.e.,
bidden gap of frequencies exhibited by the grating in theas the soliton velocity approaches the linear group velocity

linear operation regime. Bright solutions exist fla¥| <1,
which is mapped into the inner domaix?+v?<1 of the

Vg in the forward or backward direction
As far as the terminology is concerned, a last important

parameter planeA,v (such representation was already comment is in order. Bright solitary solutions of E@%) are
adopted in Refd.10,13). This unitary circle can be regarded usually classified as gap solitons or Bragg solitons, depend-
as adynamical gapsince in this domain the linear problem ing on their detunings; being inside [5;|<1, light-shaded
[i.e., Egs.(1) with S,X=0] yields exponentially damped domain in Fig. 1 or outside (X|&;|<y, dark-shaded do-

traveling-wave  solutions [u™«exp(—iAt+iQZ),  with

main in Fig. 1 the rest gap, respectively. Though such a

Q?<0]. On the other hand, solutions with nonzero pedestatlistinction can be useful to locate the operating frequency

exist only outside this dynamical gap or unitary circle.
To clarify further the role of the soliton velocity, it is
important to link the dynamical gap?+v2<1 with the

with respect to the reflectivity bandwidth of the grating, it
appears otherwise rather artificial. First, for any given veloc-
ity v there are no qualitative changes of the solutions by
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crossing the boundarys;|=1 between these two regions. [9,10]. Incidentally, the decay of an unstable GS can be ac-
Second, and more important, the picture of Fig. 1 suggestsompanied by changes of both internal parameters, fre-
that all the existing bright-localized waves are in fgep  quency and velocity.

solitons if referred to the dynamical gap. In other words, the In order to find the GS profiles consider that E(®.are

plot of Fig. 1(@) can be interpreted by saying that the effec-equivalent to the motion of an ideal particle of unitary mass
tive frequency gap seen by a soliton that moves at velacity and total energy in a quartic potential welU( %), ruled by

is wider (the faster the soliton the wider the gaban the rest  the equationy=—dU/d». The kinetic energy is easily ob-

gap measured through the reflectivity in the rest frame. Thigained in the standard form from the first of Eq8) by
is also supported by the fact thatcan be interpreted as the eliminating sind throughH, which yields

frequency detuning of the soliton in Lorentz transformed
variables{, 7 with 7= y(t—vz) [15]. Therefore the rest gap 7=V2[E-U(n)], (4)
condition| ;] <1 must be replaced in moving soliton coor-
dinates by the conditiohs|=|8,|/y<1 that coincides with WwhereU=—25H7—3(4—48*~H)»’~67°+ 57", andE
the dynamical gap. =—H?/2. The GS solutions can be worked out explicitly by
As far as the excitation of bright GS is concerned, onenverting the quadrature integral obtained from E4). with
should correctly refer to the dynamicékider) gap as the the energyE= —H§/2 pertaining to the unstable fixed point.
proper region of existence. In general one can achieve corf-or the casei) |5|<1, we found expressions for the inten-
trol on the input laser frequency detunifice., 5;) and the sity »(¢) and phas&(() [explicit expressions for the phases
beam profiles, but not on the velocity. Whgh|>1, sothat  ¢-.({) can be also foundwhich entail GS of the bright type
the laser operates outside the rest gap it is usually the

case in experiments carried out in fiber gratingsis imme- B 41— 8% 5
d|2ately clegr2 from Fig. (@) that one has a IOV\{er bounc_i 78 cost2V1— %) — &'

viow=1—6; © on the square velocity of the excitable soli-

tons. In other words only solitons that travel with velocity 1= 82sinh 21— &2
[v|>viow=(1— 87 %) (in both directiong do exist and can fg=tan ! il ) . (6)
be excited. In the limit of infinite-frequency detunings —1+dcosh2y1l-67)

oty el lineas roup.velos, Conversely. imsle heC19%€ 10 the loverequency edge of the dynamical gap
y group Y- Y 6~ —1, the following approximation of the intensity profile

rest gap [8;/<1), such limitation does not hold, and . : . _ ~
solitons with any velocityjv|<1 can be excited. Ideally, a in Eq. (5) holds valid[exploit cosh(2)=2 cosK(9—1 and

2
particular value of velocity is selected by matching the input1 o =2(1+9)]
beam profile(intensity and phageto the solution that corre- ne=4(1+ 8)secR(v2(1+)0), 7)
sponds to that particular value of velocity. However, this can
be hardly done in practice because, even assuming that thenghich is characteristic of the one-soliton solution of the fo-
is no change of frequency in the process of soliton formationgusing nonlinear Schdinger equation, which is known to
the actual field profile inside the grating is affected by strongprovide a reasonable description of GS in this region of the
reflection at the grating boundary, and the velocity, in gen-gap[5,16].
eral, cannot be predicted with simple arguments. Moreover, In the caseii), i.e. for §>1 two solutions coexist, being
one should consider that the excitation of a soliton requiresassociated with two branches of a double-loop separatrix.
besides existence, also to fulfill the requisite of stability The first one represents a dark soliton

cosh2\/6—10)—+/8

7ok 20 ) e Koo 10+ 1 ®
- 46— 1(5+1)sinh( 26— 1¢) ] ©

38%+26%2—3+4(5—1)5cosh2\/6—1¢) +(5%°—28%%—1)cosh4\/5—1¢)

whereas the second one is a bright on pedestal or so-called

4\6—1yé8sinh(2\6—1
antidark solutior{17] Op=tan ! Vasink 0 ) (11)
2—36+6cosid\é—10)
nak=2(5—1) Vécosti2 V5—1§)+1, (10)  These dark and antidark solutions specialized to the zero-
\/Scosf(zx/é— 10)—-1 velocity case ¢ =0) have important implications in terms of
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the stationary {;=0) response of the grating, inducing lim-
iting or frustrated bistability, as discussed in Ref8].

Right on the high-frequency edge of the dynamical gap,
i.e., for 5—1, the dark GS vanishespfk—0), while the
bright and the antidark solutions have the following common
limit:

velocity
=

_ 8
1+(20)%

Nz= (12

4
(201

1

0LZ =tan ' (13)

1
detuning

0
which represents a finite-amplitude moving Lorentzian soli-
ton, i.e., a GS with Lorentzian intensity profile. The exis- . . . .
tence of an exact solution of Eg4) with nonexponentially ~ FIG. 2. Existence diagrarefocusing casefor subluminal GS
decaying tails can be understood from the dynamical systerfi the region of detuning-velocityX,v) plane bounded by the thin
(3) as being associated with a degenerate fixed point at thi1es atv==1. The insets show GS intensity profilgs. |
origin with zero eigenvalues. The fact that the LorentzianS@MPpled at the nearest markéitied circle). Bright GS of low-
shape approximates well bright GS close to the upper boun@"Plitude(LA), high-amplitude(HA), and asymmetricAS) types
of the gap was noticed earlier under strictly stationary con&Xist inside the dynamical gapnitary circleA”+v=1). HA soli-
ditions (v =0) [6] tons become finite-amplitude LorentzidoZ) over the right semi-
Vice versa, for6— —1, i.e., close to the low-frequency

circle, and then bifurcate into dafoK) and antidark(AK) pairs,
. . . ) . which coexist for frequencies above the er edge of the dynami-
edge of the dynamical gap, the intensity of the bright GS mlv I X guenct y upPp g ynam
Eg. (5 [or, consistently, of its nonlinear Schilinger ap-

al bandgap. In the focusing case the same picture holds with
A——A.
proximation(7)] reduces to the following Lorentzian profile

infinite grating, have infinite energy due to their nonzero

4(1+ 6) 4(1+6)

M= = _ (14) background. In a finite grating the excitation of such dark or
144 T, 1+2(1+6) antidark GS solutions is likely to be more critical than their
1— 5§ bright counterpart, requiring proper excitation at the grating

boundaries.

In this case, however, as the stop-band edge is approached Vice versa, as explained above, the low-amplityté
the Lorentzian GS14) becomes broader and smaller, andinsed bright GS that exist close to the lower edge of the gap
eventually vanishes identicallyyg—0) for 6=—1. The vanishes in the limitb>— —1, and no solutions exist below
difference between the finite-amplitud&q. (13)] and the the bottom of the stop band.e., outside the circle foA
vanishing-amplitudg¢ Eq. (14)] Lorentzian GS accounts for <0). For a focusing nonlinearitys& 1) an identical picture
an intrinsic asymmetry of the nonlinear grating operationwith A— —A holds true, meaning that the dark-antidark
with respect to interchange of frequencies below and abovpairs originate always from the high-amplitude bright GS,
the Bragg frequency, respectively. though, in this case, they now exist below the low-frequency

Figure 2 summarizes the nature of the different GS soluedge of the dynamical gap.
tions by reporting the intensity profilgs.. |? of qualitatively The bifurcation of GS can be effectively explained in
different GS solutions sampled in the parameter plan@).  terms of the catastrophe thedry9], and the underlying clas-
First, it must be noticed that stillu=0) GS have equal sification of the singularities of smooth functions. The quar-
intensitiesu , |°=|u_|? as a consequence of the fact that thetic potentialU(#) belongs to the so-called cugp, 5 family
net photon flux is zero, for both in-gapright) and out-gap [19]. It can be recast in the following standard form by
(dark-antidark solutions. Moreover, let us recall that the am- means of the change of variable=4/2x+ 24, thus obtain-
plitude of the in-gap(bright) GS increases and their width ing
decreases by spanning the gap from left to right. The sym-
metry |u, |?=|u_|? is broken for moving GS, which have a
stronger component in the direction of motigie., |u, |
>|u_| for v>0 and |u_|>|u,| for v<0). Importantly,
bright GS that have high amplitudeee HA inset in Fig.
close to the upper edge of the dynamical gap, becom#wherea=+2(—4-26°+H) andb=—8%/25. A necessary

U(x)=£x4+ Ex2+bx (15
2" "2 ’

Lorentzian GS(LZ inset in Fig. 2 over the edgeA +v?
=1, and then bifurcate into dark-antidark paiBK and AK

condition for the solitary waves to exist is that the potential
U(x) has three critical pointgi.e., such that?O/ax:O),

insets in Fig. 2 outside the dynamical bandgap. It is worth thus being of a double-well type. In the parameter plane

noting that the bright GS solutions with finite ener¢yr

(a,b) this occurs in a domain bounded by the following

mass bifurcate into this pair of solutions that, in an ideal curve, so-called “bifurcation set['19],
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catastrophe point$=*1 where the control line becomes
tangent to the bifurcation set. In spite of the apparent sym-
metry of Fig. 3, the two catastrophes are the signature of the
strongly asymmetrical behavior of GS against interchange of
frequencies below<0) and above §>0) the Bragg fre-
quency. Indeed, thé=1 catastrophe marks the point where
the maximum of the potentidll5) moves from a finite posi-
tive value for 6>1 (which makes accessible two distinct
asymptotic evolutions inside the two wells, in turn corre-
sponding to the dark and antidark 3o the origin for
—1<6<1 (where only one well is accessible for the
2 XT3 5 .5 2 asymptotic motion towards the origin that describes the
b bright GS. Conversely, the other catastrophe &t —1
marks the point where these bright GS simply cease to exist

FIG. 3. Plot of the bifurcation sdthin line) from Eq.(16) and  pecause the maximum of the potential moves towards nega-
the control line(thick line) that gives theAparametric dependence of tje values. In fact, though the potential still has a double-
the coefficientsa and b of the pOtentialU(X) in Eq (15) on the well Shape even for o< 5<_1’ the poss|b|||ty to have
control parametes, when this is varied from large-negative values solitary waves is ruled out by the fact that the two wells
(6=—) to large-positive values&=c<). The dashed portion of  pacome accessible only with<0, and hence the solutions
the control line corresponds to unphysical solutions<0). TWo  5r6 ynphysicalrecall thaty is an intensity. The dashed line
catastrophes occur at the poirdts = 1. in Fig. 3 displays that portion of the control line where the
solutions are unphysical.

In summary we have shown that GS solutions of a well-
known standard coupled-mode model with Kerr or Kerr-
equivalent nonlinearity undergo a bifurcation that is strongly
which is reported as a thin-solid line in Fig. 3. As shown, thisasymmetrical with respeqt to the Bragg frquency. The qu_ali-
curve has the characteristic shape of a cusp. In the spirit (}F_ltlve change of the solutlo_ns is explained with a geometrical
the catastrophe theory, we also report in Fig. 3 the so-calleBicturé based on the application of the catastrophe theory.
control line, i.e., how the parametera,b), and as a conse- The bifurcation is marked by the existence of finite-

th tentidl bv chanaing the sinal trol amplitude Lorentzian GS. In this sense it is reminiscent of
quence the potential, vary by changing the singie control e recently investigated case of localized waves sustained
parametew from large-negative values to large-positive val-

L L S - by a gap of full nonlinear origif20]. In spite of the diversity
ues(indicated in Fig. 3 by the limig= —oo "ind 0=, T&= patween the bifurcation discussed here and that of [RéF,
spectively. In domg Sowe calc_ulgta with H_HS’ Le., the g suggests that Lorentzian solitons can play a universal
value of the Hamiltonian pertaining to the solitons.

. . o2 role in the localization of light in periodic media.
According to our analysis, by varying in the range
(—,%) the control line remains always inside the cusp,

indicating the possibility to have solitary waves. Dramatic  We thank Yuri Kivshar for fruitful discussions concerning
qualitative changes of the solutions must be expected at theorentzian solitons.

=| =0, (16)
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